To design and evaluate an Orthogonal Frequency Division Multiplexing (OFDM) system in MATLAB
To design and evaluate an Orthogonal Frequency Division Multiplexing (OFDM) system in MATLAB, follow these steps:
1. OFDM System Design
Key Parameters
N = 64; % Number of subcarriers CP = 16; % Cyclic prefix length M = 4; % Modulation order (4 = QPSK) numSymbols = 100; % Number of OFDM symbols snrdB = 0:2:20; % SNR range (dB)
Transmitter
- Bit Generation: Generate random bits.
- Modulation: Map bits to symbols (e.g., QPSK).
- IFFT: Convert frequency-domain symbols to time domain.
- Add Cyclic Prefix (CP): Append the end of the symbol to the start.
% Generate bits bitsPerSymbol = N * log2(M); totalBits = bitsPerSymbol * numSymbols; bits = randi([0 1], totalBits, 1); % Modulate using QPSK modulatedSymbols = qammod(bits, M, 'InputType', 'bit', 'UnitAveragePower', true); % Reshape into OFDM symbols and perform IFFT ofdmSymbols = reshape(modulatedSymbols, N, numSymbols); timeDomainSymbols = ifft(ofdmSymbols, N); % Add cyclic prefix cp = timeDomainSymbols(end-CP+1:end, :); txSignal = [cp; timeDomainSymbols]; txSignalSerial = txSignal(:); % Serialize for transmission
Channel Model
Add AWGN (Additive White Gaussian Noise):
rxSignalSerial = awgn(txSignalSerial, snrdB(idx), 'measured');
Receiver
- Remove CP: Discard the cyclic prefix.
- FFT: Convert time-domain signal back to frequency domain.
- Demodulation: Recover bits from symbols.
% Remove CP and perform FFT rxSignal = reshape(rxSignalSerial, size(txSignal)); rxSymbols = rxSignal(CP+1:end, :); frequencyDomainSymbols = fft(rxSymbols, N); % Demodulate rxBits = qamdemod(frequencyDomainSymbols(:), M, 'OutputType', 'bit', 'UnitAveragePower', true);
2. Performance Evaluation
Bit Error Rate (BER) vs SNR
Compare simulated BER with theoretical QPSK performance:
ber = zeros(size(snrdB)); for idx = 1:length(snrdB) % ... (transmit and receive steps) ber(idx) = sum(bits ~= rxBits) / totalBits; end % Theoretical BER (adjust for CP overhead) EsN0_linear = 10.^(snrdB/10); EbN0_linear = EsN0_linear * (N / (N + CP)) / log2(M); theoryBER = 0.5*erfc(sqrt(EbN0_linear)); % Plot results semilogy(snrdB, ber, 'b-o', snrdB, theoryBER, 'r--'); xlabel('SNR (dB)'); ylabel('BER'); grid on; legend('Simulated', 'Theoretical');
PAPR (Peak-to-Average Power Ratio)
Calculate the CCDF (Complementary Cumulative Distribution Function) of PAPR:
% Generate time-domain symbols ofdmSymbolsPAPR = ifft(ofdmSymbols(:,1:numSymbols), N); % Compute PAPR signalPower = mean(abs(ofdmSymbolsPAPR).^2, 1); peakPower = max(abs(ofdmSymbolsPAPR).^2, [], 1); papr_dB = 10*log10(peakPower ./ signalPower); % Plot CCDF [Nccdf, Xccdf] = ecdf(papr_dB); semilogy(Xccdf, 1-Nccdf); xlabel('PAPR (dB)'); ylabel('Probability (PAPR > X)'); grid on;
3. Simulation Output
- BER Curve: Simulated BER should align with the theoretical curve after correcting for CP overhead.
- PAPR CCDF: Shows the probability of PAPR exceeding a threshold (e.g., 10 dB for QPSK).
Extensions for Advanced Evaluation
- Multipath Fading Channels:
- Model using
rayleighchan
orcomm.RayleighChannel
. - Include channel estimation and equalization (e.g., using pilots).
- Model using
- Channel Coding:
- Add convolutional or LDPC coding using
comm.ConvolutionalEncoder
/comm.LDPCEncoder
.
- Add convolutional or LDPC coding using
- Throughput Analysis:
- Measure data rate after accounting for coding overhead and retransmissions.
Example Code
[Refer to the detailed code in the Answer section for implementation.]