To implement the Finite Element Method (FEM) for electromagnetic field problems on a Raspberry Pi,
To implement the Finite Element Method (FEM) for electromagnetic field problems on a Raspberry Pi, follow this structured approach:
1. Setup Raspberry Pi
- Install Raspberry Pi OS: Ensure the latest OS is installed.
- Install Required Packages:
sudo apt-get update sudo apt-get install python3 python3-pip python3-matplotlib gmsh pip3 install numpy scipy
2. Problem Definition
Choose a simple 2D electrostatic problem (e.g., parallel plate capacitor with potentials V and 0). Domain: Rectangular region with Dirichlet BCs on top/bottom plates.
3. Mesh Generation
- Using Gmsh:
- Create a
.geo
file defining the geometry and mesh parameters. - Generate a triangular mesh and export to
mesh.msh
. - Convert
mesh.msh
to a format readable by Python (e.g., usingmeshio
).
- Create a
4. FEM Implementation in Python
Code Structure:
import numpy as np from scipy.sparse import lil_matrix, csr_matrix from scipy.sparse.linalg import spsolve import matplotlib.pyplot as plt import meshio # Read mesh mesh = meshio.read("mesh.msh") points = mesh.points[:, :2] # 2D points cells = mesh.cells_dict["triangle"] # Triangular elements # Parameters epsilon = 8.85e-12 # Permittivity V = 10 # Voltage on top plate # Identify boundary nodes (e.g., y=0 and y=height) top_nodes = np.where(points[:, 1] == np.max(points[:, 1]))[0] bottom_nodes = np.where(points[:, 1] == np.min(points[:, 1]))[0] # Initialize global matrix (sparse) and vector n_nodes = points.shape[0] K = lil_matrix((n_nodes, n_nodes)) F = np.zeros(n_nodes) # Assemble stiffness matrix for tri in cells: nodes = tri x = points[nodes, 0] y = points[nodes, 1] area = 0.5 * np.abs((x[1]-x[0])*(y[2]-y[0]) - (x[2]-x[0])*(y[1]-y[0])) B = np.array([[y[1]-y[2], y[2]-y[0], y[0]-y[1]], [x[2]-x[1], x[0]-x[2], x[1]-x[0]]]) / (2 * area) Ke = (epsilon * area) * (B.T @ B) # Element matrix for i in range(3): for j in range(3): K[nodes[i], nodes[j]] += Ke[i, j] # Apply Dirichlet BCs for node in top_nodes: K[node] = 0 K[node, node] = 1 F[node] = V for node in bottom_nodes: K[node] = 0 K[node, node] = 1 F[node] = 0 # Solve K = csr_matrix(K) phi = spsolve(K, F) # Compute electric field (E = -grad phi) Ex = np.zeros_like(phi) Ey = np.zeros_like(phi) for tri in cells: nodes = tri x = points[nodes, 0] y = points[nodes, 1] B = np.array([[y[1]-y[2], y[2]-y[0], y[0]-y[1]], [x[2]-x[1], x[0]-x[2], x[1]-x[0]]]) / (2 * area) grad_phi = B @ phi[nodes] Ex[nodes] -= grad_phi[0] Ey[nodes] -= grad_phi[1] # Visualize plt.tricontourf(points[:, 0], points[:, 1], cells, phi, levels=20) plt.colorbar(label='Electric Potential (V)') plt.quiver(points[:, 0], points[:, 1], Ex, Ey, scale=50, color='white') plt.title('Electric Potential and Field') plt.xlabel('x') plt.ylabel('y') plt.show()
5. Post-Processing
- Visualize the electric potential and field using Matplotlib.
- Compute derived quantities (e.g., capacitance).
6. Optimization Tips
- Use sparse matrices to save memory.
- Limit mesh size (e.g., <1000 nodes) for Raspberry Pi compatibility.
- Prefer iterative solvers (e.g., Conjugate Gradient) for larger systems.
Example Results
- Potential Distribution: Linear gradient between plates.
- Electric Field: Uniform between plates, diverging at edges.
Extensions
- 3D Problems: Use tetrahedral meshes (requires more computational power).
- Time-Harmonic Analysis: Solve ∇×(μ−1∇×E)−ω2ϵE=0.
- Nonlinear Materials: Iterate to update material properties.
This approach leverages the Raspberry Pi’s capabilities for educational or small-scale FEM projects in electromagnetics