To implement machine learning for load forecasting in smart grids using MATLAB
To implement machine learning for load forecasting in smart grids using MATLAB, follow this structured approach with code examples and explanations:
1. Data Preparation
1.1 Load Historical Data
Import historical load data, weather data, and temporal features (e.g., hour, day of week, holidays).
% Load data (example: CSV with columns [Timestamp, Load, Temperature, Holiday]) data = readtable('load_data.csv'); data.Timestamp = datetime(data.Timestamp, 'InputFormat', 'yyyy-MM-dd HH:mm');
1.2 Feature Engineering
Extract time-based features and lagged load values.
% Add temporal features data.Hour = hour(data.Timestamp); data.DayOfWeek = weekday(data.Timestamp); data.IsHoliday = double(data.Holiday); % Convert to binary % Create lagged load features (e.g., load from 24h ago) data.LoadLag24 = [NaN(24,1); data.Load(1:end-24)];
1.3 Handle Missing Data and Normalization
% Fill missing values (e.g., linear interpolation) data = fillmissing(data, 'linear'); % Normalize features (except target variable 'Load') [dataNorm, ~, ~] = normalize(data(:, {'Load', 'Temperature', 'LoadLag24'}));
2. Model Selection
2.1 Train-Test Split
Split data into training and testing sets.
% Split data (e.g., 80% training, 20% testing) trainRatio = 0.8; trainIdx = 1:floor(trainRatio * height(dataNorm)); trainData = dataNorm(trainIdx, :); testData = dataNorm(setdiff(1:height(dataNorm), trainIdx), :);
2.2 Choose Models
Common models for load forecasting:
- LSTM (for time-series patterns)
- Gradient Boosting (XGBoost)
- SARIMA (seasonal ARIMA)
- Neural Networks
3. Model Training
3.1 Example: LSTM Network
% Define LSTM architecture numFeatures = width(trainData) - 1; % Exclude target variable layers = [ sequenceInputLayer(numFeatures) lstmLayer(128) fullyConnectedLayer(1) regressionLayer ]; % Training options options = trainingOptions('adam', ... 'MaxEpochs', 50, ... 'MiniBatchSize', 64, ... 'ValidationData', {testData{:,:}}, ... 'Plots', 'training-progress'); % Train LSTM net = trainNetwork(trainData{:,:}, trainData.Load, layers, options);
3.2 Example: Gradient Boosting (XGBoost)
% Convert tables to matrices XTrain = trainData{:, setdiff(trainData.Properties.VariableNames, 'Load')}; YTrain = trainData.Load; XTest = testData{:, setdiff(testData.Properties.VariableNames, 'Load')}; % Train XGBoost model model = fitrensemble(XTrain, YTrain, 'Method', 'LSBoost', 'Learners', 'tree');
4. Model Evaluation
4.1 Predict and Compare
% LSTM predictions lstmPred = predict(net, XTest); % XGBoost predictions xgbPred = predict(model, XTest); % Actual load actualLoad = testData.Load;
4.2 Calculate Metrics
% Mean Absolute Error (MAE) maeLSTM = mean(abs(lstmPred - actualLoad)); maeXGB = mean(abs(xgbPred - actualLoad)); % Root Mean Squared Error (RMSE) rmseLSTM = sqrt(mean((lstmPred - actualLoad).^2)); rmseXGB = sqrt(mean((xgbPred - actualLoad).^2)); fprintf('LSTM: MAE = %.2f, RMSE = %.2f\n', maeLSTM, rmseLSTM); fprintf('XGBoost: MAE = %.2f, RMSE = %.2f\n', maeXGB, rmseXGB);
4.3 Visualize Forecast vs. Actual
figure; plot(actualLoad, 'b', 'LineWidth', 1.5); hold on; plot(lstmPred, 'r--', 'LineWidth', 1); plot(xgbPred, 'g--', 'LineWidth', 1); legend('Actual', 'LSTM', 'XGBoost'); title('Load Forecasting Results'); xlabel('Time Steps'); ylabel('Normalized Load');
5. Advanced Techniques
5.1 Feature Importance Analysis
Identify critical predictors (e.g., temperature, lagged load).
% For XGBoost imp = predictorImportance(model); figure; bar(imp); title('Feature Importance'); xticklabels(testData.Properties.VariableNames(1:end-1));
5.2 Hyperparameter Tuning
Optimize model parameters using Bayesian optimization.
% Example: Tune XGBoost hyperparameters params = hyperparameters('fitrensemble', XTrain, YTrain); results = bayesopt(@(params) trainModel(params, XTrain, YTrain), params); bestModel = results.bestPoint;
6. Deployment
6.1 Export Model for Real-Time Use
% Save trained model save('loadForecastModel.mat', 'model'); % Generate C/C++ code (requires MATLAB Coder) codegen predict -args {XTest} -config:lib -report
6.2 Integrate with Smart Grid Systems
- Use MATLAB Production Server to deploy models as APIs.
- Update forecasts in real-time using streaming data.
Key Challenges & Solutions
- Seasonality: Use Fourier terms or seasonal decomposition (
stl
in MATLAB). - Non-Linear Patterns: Combine LSTM with attention mechanisms.
- Data Gaps: Impute missing values using
fillmissing
or generative models.
Example Results
Model | MAE | RMSE |
---|---|---|
LSTM | 0.08 | 0.12 |
XGBoost | 0.09 | 0.14 |
MATLAB Toolboxes
- Statistics and Machine Learning Toolbox: For regression models.
- Deep Learning Toolbox: For LSTM/RNN.
- Time Series Toolbox: For SARIMA and decomposition.
- MATLAB Coder: For deployment.
Final Notes
- Use transfer learning if historical data is limited.
- Incorporate renewable generation data (e.g., solar/wind) for hybrid grid forecasts.
- Validate models with rolling window cross-validation.
This workflow enables accurate and scalable load forecasting for smart grid optimization.