Simulating autonomous vehicle systems in MATLAB involves modeling vehicle dynamics, sensors, control algorithms, and environments
Simulating autonomous vehicle systems in MATLAB involves modeling vehicle dynamics, sensors, control algorithms, and environments. MATLAB’s Automated Driving Toolbox, Simulink, and Reinforcement Learning Toolbox are commonly used. Below is a step-by-step guide with code examples:
Step 1: Model the Vehicle and Environment
1.1 Create a Driving Scenario
Use the drivingScenario
class to define roads, vehicles, and trajectories.
% Create a driving scenario scenario = drivingScenario; road(scenario, [0 0; 100 0]); % Straight road egoVehicle = vehicle(scenario, 'ClassID', 1); % Add ego vehicle trajectory(egoVehicle, [0 0 0; 50 0 0], 10); % Define path (50m in 10s)
1.2 Visualize the Scenario
% Plot the scenario plot(scenario); title('Autonomous Vehicle Simulation Scenario'); chasePlot(egoVehicle); % Chase camera view
Step 2: Simulate Sensors
2.1 Add Lidar/Camera/Radar Sensors
% Add a lidar sensor to the ego vehicle lidarSensor = monostaticLidarSensor(1, 'MountingLocation', [0 0 2]); lidarSensor.AzimuthResolution = 0.5; % Degrees lidarSensor.ElevationResolution = 0.5; % Add a front-facing camera camera = visionDetectionGenerator('SensorIndex', 1, 'Height', 1.5);
2.2 Generate Sensor Data
while advance(scenario) % Simulate lidar point cloud [ptCloud, validTime] = lidarSensor(pose(egoVehicle), scenario); % Simulate camera detections [image, cameraDetections] = camera(pose(egoVehicle), scenario); % Visualize sensor data pcshow(ptCloud); % Lidar point cloud imshow(image); % Camera image end
Step 3: Implement Control Algorithms
3.1 PID Controller for Path Tracking
Use Simulink or MATLAB’s Control System Toolbox to design a PID controller.
% Example PID controller for lateral control (steering) Kp = 0.1; Ki = 0.01; Kd = 0.05; pidController = pid(Kp, Ki, Kd); % Simulate control input steeringAngle = pidController(error); % error = desired vs. actual path
3.2 Reinforcement Learning for Decision-Making
Use the Reinforcement Learning Toolbox to train an agent (e.g., DQN or PPO).
% Define the environment env = rlPredefinedEnv('AutonomousDriving-v0'); % Create a DQN agent agent = rlDQNAgent(env); % Train the agent trainOpts = rlTrainingOptions('MaxEpisodes', 1000); trainingStats = train(agent, env, trainOpts);
Step 4: Simulate Vehicle Dynamics
4.1 Use Simulink for Dynamics Modeling
Leverage Simulink’s Vehicle Dynamics Blockset to model vehicle physics:
- Bicycle Model: Simulate lateral/longitudinal dynamics.
- 3D Vehicle Model: Include suspension and tire forces.
Step 5: Integrate Perception, Planning, and Control
Combine sensor data, path planning (A* or RRT*), and control in a closed-loop simulation.
% Example workflow: % 1. Perception: Detect obstacles using lidar/camera. detectedObstacles = processLidarData(ptCloud); % 2. Path Planning: Generate a collision-free path. plannedPath = pathPlanner(detectedObstacles, egoPose); % 3. Control: Adjust steering/throttle to follow the path. steerCmd = pidController(plannedPath);
Step 6: Analyze Results
6.1 Visualize Trajectories and Sensor Data
% Plot ego vehicle trajectory plot(egoVehicle.Trajectory.X, egoVehicle.Trajectory.Y, 'r--'); hold on; plot(plannedPath.X, plannedPath.Y, 'b-'); legend('Actual Path', 'Planned Path');
6.2 Evaluate Safety Metrics
Calculate collision rates, time-to-collision (TTC), or tracking error.
collisionStatus = checkCollision(egoVehicle, scenario); fprintf('Collision Detected: %d\n', collisionStatus);
Key Toolboxes
- Automated Driving Toolbox: Sensor simulation, scenario generation.
- Robotics System Toolbox: Path planning (A*, RRT*).
- Computer Vision Toolbox: Object detection/tracking.
- Reinforcement Learning Toolbox: AI-based decision-making.
Example Outputs
- Sensor Data:
- Control Performance:
Notes
- Use Simulink 3D Animation for realistic visualization.
- Leverage MATLAB’s ADAS Algorithm Examples for prebuilt models.
- Test edge cases (e.g., sudden pedestrian crossings, sensor failures).
This workflow enables end-to-end simulation of autonomous vehicle systems in MATLAB. For advanced use cases, combine with ROS/ROS2 for hardware-in-the-loop (HIL) testing