Machine Learning for Excel Users: MATLAB Crash Course

Machine Learning for Excel Users: MATLAB Crash Course

Transitioning from Excel to MATLAB for machine learning (ML) involves moving from spreadsheet-based workflows to code-driven analysis. This guide bridges the gap by comparing Excel tasks to MATLAB equivalents and provides a step-by-step crash course.


Key Concepts Comparison

Task Excel Approach MATLAB Approach
Data Import Open .xlsx file directly. data = readtable('data.xlsx');
Handling Missing Data Manually delete rows or use IF() formulas. data = rmmissing(data); or fillmissing(data, 'constant', 0);
Feature Scaling Use formulas: =(X - AVERAGE(X))/STDEV(X) data.Normalized = normalize(data.Value);
Model Training Limited to linear regression (Analysis ToolPak). Use ML functions: fitlmfitcsvmfitctree
Predictions Manually apply formulas to new data. predictions = predict(model, new_data);
Evaluation Calculate metrics with COUNTIF/STDEV. confusionmat(true_labels, predicted_labels);

Crash Course: ML Workflow in MATLAB

  1. Import Data
    • Excel: Open file directly.
    • MATLAB:
      matlab
      Copy
      data = readtable('your_data.xlsx');
  2. Preprocess Data
    • Remove missing values:
      matlab
      Copy
      data = rmmissing(data);
    • Normalize features:
      matlab
      Copy
      data.Age = normalize(data.Age);
  3. Train-Test Split
    • Excel: Manually copy rows.
    • MATLAB:
      matlab
      Copy
      cv = cvpartition(size(data,1), 'HoldOut', 0.3);
      train_data = data(cv.training,:);
      test_data = data(cv.test,:);
  4. Train a Model
    • Example: Decision Tree
      matlab
      Copy
      model = fitctree(train_data, 'Label');
  5. Evaluate Performance
    • Predict and calculate accuracy:
      matlab
      Copy
      predictions = predict(model, test_data);
      accuracy = sum(predictions == test_data.Label)/numel(predictions);
  6. Visualize Results
    • Plot confusion matrix:
      matlab
      Copy
      confusionchart(test_data.Label, predictions);

Example: Iris Classification

matlab
Copy
% Load data
load fisheriris;
data = array2table(meas, 'VariableNames', {'Length','Width','PetalLength','PetalWidth'});
data.Species = species;

% Split data
cv = cvpartition(data.Species, 'HoldOut', 0.3);
train_data = data(cv.training,:);
test_data = data(cv.test,:);

% Train model
model = fitctree(train_data, 'Species');

% Evaluate
predictions = predict(model, test_data);
accuracy = sum(predictions == test_data.Species)/numel(predictions);
disp(['Accuracy: ', num2str(accuracy)]);

Tips for Excel Users

  1. Use MATLAB Apps (e.g., Classification Learner) for a GUI experience similar to Excel.
  2. Vectorize Code instead of using loops (like Excel array formulas).
  3. Leverage Tables for spreadsheet-like data structures.
  4. Plot Liberally: Use plot()scatter(), and histogram() for visual analysis.

Conclusion

MATLAB streamlines ML workflows with automated functions and powerful scripting, while still offering GUI tools for Excel-like interactions. Start with simple models (e.g., linear regression) and gradually explore advanced algorithms. Use MATLAB’s documentation and community forums for support.