Machine Learning for Excel Users: MATLAB Crash Course
Machine Learning for Excel Users: MATLAB Crash Course
Transitioning from Excel to MATLAB for machine learning (ML) involves moving from spreadsheet-based workflows to code-driven analysis. This guide bridges the gap by comparing Excel tasks to MATLAB equivalents and provides a step-by-step crash course.
Key Concepts Comparison
Task | Excel Approach | MATLAB Approach |
---|---|---|
Data Import | Open .xlsx file directly. |
data = readtable('data.xlsx'); |
Handling Missing Data | Manually delete rows or use IF() formulas. |
data = rmmissing(data); or fillmissing(data, 'constant', 0); |
Feature Scaling | Use formulas: =(X - AVERAGE(X))/STDEV(X) |
data.Normalized = normalize(data.Value); |
Model Training | Limited to linear regression (Analysis ToolPak). | Use ML functions: fitlm , fitcsvm , fitctree |
Predictions | Manually apply formulas to new data. | predictions = predict(model, new_data); |
Evaluation | Calculate metrics with COUNTIF /STDEV . |
confusionmat(true_labels, predicted_labels); |
Crash Course: ML Workflow in MATLAB
- Import Data
- Excel: Open file directly.
- MATLAB:
data = readtable('your_data.xlsx');
- Preprocess Data
- Remove missing values:
data = rmmissing(data);
- Normalize features:
data.Age = normalize(data.Age);
- Remove missing values:
- Train-Test Split
- Excel: Manually copy rows.
- MATLAB:
cv = cvpartition(size(data,1), 'HoldOut', 0.3); train_data = data(cv.training,:); test_data = data(cv.test,:);
- Train a Model
- Example: Decision Tree
model = fitctree(train_data, 'Label');
- Example: Decision Tree
- Evaluate Performance
- Predict and calculate accuracy:
predictions = predict(model, test_data); accuracy = sum(predictions == test_data.Label)/numel(predictions);
- Predict and calculate accuracy:
- Visualize Results
- Plot confusion matrix:
confusionchart(test_data.Label, predictions);
- Plot confusion matrix:
Example: Iris Classification
% Load data load fisheriris; data = array2table(meas, 'VariableNames', {'Length','Width','PetalLength','PetalWidth'}); data.Species = species; % Split data cv = cvpartition(data.Species, 'HoldOut', 0.3); train_data = data(cv.training,:); test_data = data(cv.test,:); % Train model model = fitctree(train_data, 'Species'); % Evaluate predictions = predict(model, test_data); accuracy = sum(predictions == test_data.Species)/numel(predictions); disp(['Accuracy: ', num2str(accuracy)]);
Tips for Excel Users
- Use MATLAB Apps (e.g., Classification Learner) for a GUI experience similar to Excel.
- Vectorize Code instead of using loops (like Excel array formulas).
- Leverage Tables for spreadsheet-like data structures.
- Plot Liberally: Use
plot()
,scatter()
, andhistogram()
for visual analysis.
Conclusion
MATLAB streamlines ML workflows with automated functions and powerful scripting, while still offering GUI tools for Excel-like interactions. Start with simple models (e.g., linear regression) and gradually explore advanced algorithms. Use MATLAB’s documentation and community forums for support.