guide to simulating convolutional codes and LDPC codes in MATLAB,
Here’s a step-by-step guide to simulating convolutional codes and LDPC codes in MATLAB, including encoding, modulation, AWGN channel, decoding, and BER calculation.
Part 1: Convolutional Codes
Convolutional codes use shift registers and polynomial generators to encode data. We’ll use the Viterbi algorithm for decoding.
MATLAB Code for Convolutional Codes
% Simulation Parameters numBits = 1e6; % Number of information bits EbN0_dB = 0:2:10; % SNR range (dB) codeRate = 1/2; % Code rate (k/n) trellis = poly2trellis(7, [171 133]); % Polynomial: (171,133) in octal % Initialize BER results ber_conv = zeros(size(EbN0_dB)); % Generate random bits dataBits = randi([0 1], numBits, 1); % Convolutional Encoder encoder = comm.ConvolutionalEncoder('TrellisStructure', trellis); encodedBits = encoder(dataBits); % BPSK Modulation modulated = 2*encodedBits - 1; % Map 0→-1, 1→+1 % Simulate for each SNR for idx = 1:length(EbN0_dB) % Add AWGN snr = EbN0_dB(idx) + 10*log10(codeRate); % Adjust SNR for code rate received = awgn(modulated, snr, 'measured'); % BPSK Demodulation (soft decision: LLR) demodulated = -real(received); % Log-likelihood ratio (LLR) % Viterbi Decoder decoder = comm.ViterbiDecoder('TrellisStructure', trellis, ... 'InputFormat', 'unquantized', 'TracebackDepth', 34); decodedBits = decoder(demodulated); % Calculate BER [~, ber_conv(idx)] = biterr(dataBits, decodedBits); end % Plot BER figure; semilogy(EbN0_dB, ber_conv, 'bo-', 'LineWidth', 2); grid on; xlabel('Eb/N0 (dB)'); ylabel('BER'); title('Convolutional Code (Rate 1/2) Performance');
Part 2: LDPC Codes
LDPC (Low-Density Parity-Check) codes use sparse parity-check matrices and iterative belief propagation for decoding.
MATLAB Code for LDPC Codes
% Simulation Parameters numBits = 1e6; % Number of information bits EbN0_dB = 0:2:10; % SNR range (dB) codeRate = 1/2; % Code rate (k/n) % Generate LDPC matrix (DVB-S2 standard) H = dvbs2ldpc(codeRate); ldpcEncoder = ldpcEncoder(H); ldpcDecoder = ldpcDecoder(H, 'Algorithm', 'Belief Propagation'); % Initialize BER results ber_ldpc = zeros(size(EbN0_dB)); % Generate random bits dataBits = randi([0 1], numBits, 1); % LDPC Encoding encodedBits = ldpcEncoder(dataBits); % BPSK Modulation modulated = 2*encodedBits - 1; % Map 0→-1, 1→+1 % Simulate for each SNR for idx = 1:length(EbN0_dB) % Add AWGN snr = EbN0_dB(idx) + 10*log10(codeRate); % Adjust SNR for code rate received = awgn(modulated, snr, 'measured'); % BPSK Demodulation (soft decision: LLR) demodulated = -2 * real(received) / (0.5^2); % LLR calculation % LDPC Decoding decodedBits = ldpcDecoder(demodulated); % Calculate BER [~, ber_ldpc(idx)] = biterr(dataBits, decodedBits); end % Plot BER figure; semilogy(EbN0_dB, ber_ldpc, 'ro-', 'LineWidth', 2); grid on; xlabel('Eb/N0 (dB)'); ylabel('BER'); title('LDPC Code (Rate 1/2) Performance');
Key Notes
- Convolutional Codes:
- Uses a rate-1/2 encoder with polynomials
[171, 133]
(octal). - Viterbi decoding with soft decisions (LLR).
- Adjust
TracebackDepth
for better performance.
- Uses a rate-1/2 encoder with polynomials
- LDPC Codes:
- Uses the DVB-S2 standard parity-check matrix.
- Belief propagation (iterative message-passing) for decoding.
- LLR calculation assumes BPSK modulation over AWGN.
- Modulation & Channel:
- BPSK modulation for simplicity.
- Adjust SNR to account for code rate:
SNR = EbN0 + 10*log10(codeRate)
.
- Performance:
- LDPC codes outperform convolutional codes at higher SNRs.
- Convolutional codes are simpler but less efficient.
How to Run
- Ensure you have the Communications Toolbox in MATLAB.
- Run the code for both convolutional and LDPC codes.
- Compare BER curves to analyze performance.
Extensions
- Try different code rates (e.g., 3/4 for LDPC).
- Use higher-order modulation (QPSK, 16-QAM).
- Compare with Turbo codes or Polar codes