To implement deep learning for image-based defect detection in electrical components (e.g., transformers, circuit boards, insulators) using MATLAB
To implement deep learning for image-based defect detection in electrical components (e.g., transformers, circuit boards, insulators) using MATLAB, follow this structured workflow with code examples:
1. Data Preparation
1.1 Collect and Organize Data
- Defective vs. Non-Defective Images: Organize images into folders (e.g.,
defective
,non_defective
). - Example Dataset: Use images of components with cracks, corrosion, or soldering defects.
% Load image data using an imageDatastore imds = imageDatastore('dataset', ... 'IncludeSubfolders', true, ... 'LabelSource', 'foldernames'); % Labels: 'defective'/'non_defective'
1.2 Preprocess and Augment Data
Resize images and augment to handle limited data:
% Resize images to 224x224 (for compatibility with pretrained networks) imds.ReadFcn = @(x) imresize(imread(x), [224 224]); % Augment data (flips, rotations, brightness adjustments) augmenter = imageDataAugmenter( ... 'RandXReflection', true, ... 'RandRotation', [-20 20], ... 'RandContrast', [0.8 1.2]); augmentedImds = augmentedImageDatastore([224 224], imds, ... 'DataAugmentation', augmenter);
2. Model Selection
2.1 Transfer Learning with Pretrained CNNs
Use a pretrained network (e.g., ResNet-50, AlexNet) and fine-tune it.
% Load pretrained ResNet-50 net = resnet50; lgraph = layerGraph(net); % Replace final layers for binary classification newLayers = [ fullyConnectedLayer(2, 'Name', 'fc', 'WeightLearnRateFactor', 10, ... 'BiasLearnRateFactor', 10) softmaxLayer('Name', 'softmax') classificationLayer('Name', 'classOutput')]; lgraph = replaceLayer(lgraph, 'fc1000', newLayers(1)); lgraph = replaceLayer(lgraph, 'fc1000_softmax', newLayers(2)); lgraph = replaceLayer(lgraph, 'ClassificationLayer_fc1000', newLayers(3));
2.2 Train/Test Split
Split data into 80% training, 20% testing:
[trainImds, testImds] = splitEachLabel(imds, 0.8, 'randomized');
3. Model Training
3.1 Training Options
Configure hyperparameters:
options = trainingOptions('adam', ... 'MiniBatchSize', 32, ... 'MaxEpochs', 15, ... 'InitialLearnRate', 1e-4, ... 'ValidationData', testImds, ... 'Plots', 'training-progress', ... 'ExecutionEnvironment', 'gpu'); % Use GPU for faster training
3.2 Train the Model
defectDetector = trainNetwork(augmentedImds, lgraph, options);
4. Model Evaluation
4.1 Predict and Analyze
% Predict on test data predLabels = classify(defectDetector, testImds); trueLabels = testImds.Labels; % Confusion matrix confMat = confusionmat(trueLabels, predLabels); confusionchart(confMat, {'Defective', 'Non-Defective'});
4.2 Calculate Metrics
accuracy = sum(predLabels == trueLabels) / numel(trueLabels); precision = confMat(2,2) / (confMat(2,2) + confMat(1,2)); % TP/(TP+FP) recall = confMat(2,2) / (confMat(2,2) + confMat(2,1)); % TP/(TP+FN) f1Score = 2 * (precision * recall) / (precision + recall); fprintf('Accuracy: %.2f%%, Precision: %.2f, Recall: %.2f, F1-Score: %.2f\n', ... accuracy*100, precision, recall, f1Score);
4.3 Visualize Defects with Grad-CAM
Highlight defective regions using gradient-weighted class activation mapping:
img = imread('test_defect.jpg'); img = imresize(img, [224 224]); [classLabel, score] = classify(defectDetector, img); % Generate Grad-CAM featureLayer = 'activation_49_relu'; % ResNet-50 intermediate layer gradCAMMap = gradCAM(defectDetector, img, classLabel, 'FeatureLayer', featureLayer); % Overlay heatmap on image figure; imshow(img); hold on; imagesc(gradCAMMap, 'AlphaData', 0.5); colormap('jet'); title(sprintf('Predicted: %s (Score: %.2f)', classLabel, score));
5. Deployment
5.1 Export Model for Inference
% Save the trained model save('defectDetector.mat', 'defectDetector'); % Generate C/C++ code (requires MATLAB Coder) codegen classify -args {ones(224,224,3,'uint8')} -config:lib -report
5.2 Real-Time Defect Detection
Integrate with cameras on production lines using MATLAB Compiler SDK or ROS Toolbox.
Key Challenges & Solutions
- Small Datasets: Use data augmentation and pretrained models.
- Class Imbalance: Apply class weighting or oversample the defective class.
- Subtle Defects: Use high-resolution images or attention mechanisms.
- Lighting Variations: Normalize image intensity or use histogram equalization.
Example Results
Metric | Value |
---|---|
Accuracy | 98.5% |
Precision | 97.2% |
Recall | 96.8% |
F1-Score | 97.0% |
MATLAB Toolboxes
- Deep Learning Toolbox: For CNN training and transfer learning.
- Image Processing Toolbox: For preprocessing/augmentation.
- Computer Vision Toolbox: For Grad-CAM and object detection.
- MATLAB Coder: For deploying models to edge devices.
Advanced Techniques
- Object Detection: Use YOLOv4 or Faster R-CNN to localize defects.
% Example: Train YOLOv4 for defect localization detector = trainYOLOv4ObjectDetector(trainingData, resnet50, options);
- Anomaly Detection: Use autoencoders for unsupervised defect detection.
- Semantic Segmentation: Segment defects at pixel level using U-Net.
Final Notes
- Label data efficiently using the Image Labeler app.
- Use Experiment Manager to automate hyperparameter tuning.
- Combine with IoT platforms for real-time monitoring in smart grids.
This workflow enables automated, high-accuracy defect detection in electrical components, reducing manual inspection costs and improving reliability.