To implement machine learning for load forecasting in smart grids using MATLAB

To implement machine learning for load forecasting in smart grids using MATLAB, follow this structured approach with code examples and explanations:


1. Data Preparation

1.1 Load Historical Data

Import historical load data, weather data, and temporal features (e.g., hour, day of week, holidays).

matlab
Copy
% Load data (example: CSV with columns [Timestamp, Load, Temperature, Holiday])
data = readtable('load_data.csv');
data.Timestamp = datetime(data.Timestamp, 'InputFormat', 'yyyy-MM-dd HH:mm');

1.2 Feature Engineering

Extract time-based features and lagged load values.

matlab
Copy
% Add temporal features
data.Hour = hour(data.Timestamp);
data.DayOfWeek = weekday(data.Timestamp);
data.IsHoliday = double(data.Holiday); % Convert to binary

% Create lagged load features (e.g., load from 24h ago)
data.LoadLag24 = [NaN(24,1); data.Load(1:end-24)];

1.3 Handle Missing Data and Normalization

matlab
Copy
% Fill missing values (e.g., linear interpolation)
data = fillmissing(data, 'linear');

% Normalize features (except target variable 'Load')
[dataNorm, ~, ~] = normalize(data(:, {'Load', 'Temperature', 'LoadLag24'}));

2. Model Selection

2.1 Train-Test Split

Split data into training and testing sets.

matlab
Copy
% Split data (e.g., 80% training, 20% testing)
trainRatio = 0.8;
trainIdx = 1:floor(trainRatio * height(dataNorm));
trainData = dataNorm(trainIdx, :);
testData = dataNorm(setdiff(1:height(dataNorm), trainIdx), :);

2.2 Choose Models

Common models for load forecasting:

  • LSTM (for time-series patterns)
  • Gradient Boosting (XGBoost)
  • SARIMA (seasonal ARIMA)
  • Neural Networks

3. Model Training

3.1 Example: LSTM Network

matlab
Copy
% Define LSTM architecture
numFeatures = width(trainData) - 1; % Exclude target variable
layers = [
    sequenceInputLayer(numFeatures)
    lstmLayer(128)
    fullyConnectedLayer(1)
    regressionLayer
];

% Training options
options = trainingOptions('adam', ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 64, ...
    'ValidationData', {testData{:,:}}, ...
    'Plots', 'training-progress');

% Train LSTM
net = trainNetwork(trainData{:,:}, trainData.Load, layers, options);

3.2 Example: Gradient Boosting (XGBoost)

matlab
Copy
% Convert tables to matrices
XTrain = trainData{:, setdiff(trainData.Properties.VariableNames, 'Load')};
YTrain = trainData.Load;
XTest = testData{:, setdiff(testData.Properties.VariableNames, 'Load')};

% Train XGBoost model
model = fitrensemble(XTrain, YTrain, 'Method', 'LSBoost', 'Learners', 'tree');

4. Model Evaluation

4.1 Predict and Compare

matlab
Copy
% LSTM predictions
lstmPred = predict(net, XTest);

% XGBoost predictions
xgbPred = predict(model, XTest);

% Actual load
actualLoad = testData.Load;

4.2 Calculate Metrics

matlab
Copy
% Mean Absolute Error (MAE)
maeLSTM = mean(abs(lstmPred - actualLoad));
maeXGB = mean(abs(xgbPred - actualLoad));

% Root Mean Squared Error (RMSE)
rmseLSTM = sqrt(mean((lstmPred - actualLoad).^2));
rmseXGB = sqrt(mean((xgbPred - actualLoad).^2));

fprintf('LSTM: MAE = %.2f, RMSE = %.2f\n', maeLSTM, rmseLSTM);
fprintf('XGBoost: MAE = %.2f, RMSE = %.2f\n', maeXGB, rmseXGB);

4.3 Visualize Forecast vs. Actual

matlab
Copy
figure;
plot(actualLoad, 'b', 'LineWidth', 1.5);
hold on;
plot(lstmPred, 'r--', 'LineWidth', 1);
plot(xgbPred, 'g--', 'LineWidth', 1);
legend('Actual', 'LSTM', 'XGBoost');
title('Load Forecasting Results');
xlabel('Time Steps');
ylabel('Normalized Load');

5. Advanced Techniques

5.1 Feature Importance Analysis

Identify critical predictors (e.g., temperature, lagged load).

matlab
Copy
% For XGBoost
imp = predictorImportance(model);
figure;
bar(imp);
title('Feature Importance');
xticklabels(testData.Properties.VariableNames(1:end-1));

5.2 Hyperparameter Tuning

Optimize model parameters using Bayesian optimization.

matlab
Copy
% Example: Tune XGBoost hyperparameters
params = hyperparameters('fitrensemble', XTrain, YTrain);
results = bayesopt(@(params) trainModel(params, XTrain, YTrain), params);
bestModel = results.bestPoint;

6. Deployment

6.1 Export Model for Real-Time Use

matlab
Copy
% Save trained model
save('loadForecastModel.mat', 'model');

% Generate C/C++ code (requires MATLAB Coder)
codegen predict -args {XTest} -config:lib -report

6.2 Integrate with Smart Grid Systems

  • Use MATLAB Production Server to deploy models as APIs.
  • Update forecasts in real-time using streaming data.

Key Challenges & Solutions

  1. Seasonality: Use Fourier terms or seasonal decomposition (stl in MATLAB).
  2. Non-Linear Patterns: Combine LSTM with attention mechanisms.
  3. Data Gaps: Impute missing values using fillmissing or generative models.

Example Results

Model MAE RMSE
LSTM 0.08 0.12
XGBoost 0.09 0.14

MATLAB Toolboxes

  • Statistics and Machine Learning Toolbox: For regression models.
  • Deep Learning Toolbox: For LSTM/RNN.
  • Time Series Toolbox: For SARIMA and decomposition.
  • MATLAB Coder: For deployment.

Final Notes

  • Use transfer learning if historical data is limited.
  • Incorporate renewable generation data (e.g., solar/wind) for hybrid grid forecasts.
  • Validate models with rolling window cross-validation.

This workflow enables accurate and scalable load forecasting for smart grid optimization.